
2025年12月12日
日本電気株式会社
袴田 博之

本資料の内容は講師個人の見解に基づくものであり、講師の所属する組織の公式見解ではありません

 「使いこなす」とは
 基礎知識

◦ 行政事務標準文字
◦ 国際標準
◦ 公的証明と本人確認

 実践のポイント
 今後の展望

2

 調達側
◦ どういう背景/経緯のものなのか？
◦ 今までと何が違うのか？外字から解放してくれる救世主なのか？
◦ どこで使う/使われるのか？
◦ どこで使わない/使われないのか？

 実装側
◦ 仕様の範囲は？
◦ 設計上のポイントは？

5

6

 行政事務の標準はJIS X 0213、戸籍氏名文字等に行政事務標準文字

 文字情報基盤約6万文字に、戸籍由来の文字字形 約1万文字を国(デジタル庁)が追加したもの

 ベース・レジストリ共通の文字集合

 追加の約1万文字の国際標準化に取り組んでいる

7

出典:https://www.digital.go.jp/policies/local_governments/character-specification

 IPAmj明朝から派生して国(デジタル庁)が作成

 国際標準化していない文字は外字領域(PUP)に実装

8

※2025年11月に予備文字の見
直しが為されているが本図に
は未反映

9

JIS X 0213
文字概念集合

文字情報基盤/行政事務標準文字
文字図形集合

行政事務標準文字追加分
固有名詞用字形集合とでも

邉
邉



橏

􉘘
􉘛

字形の差異を
概念として包含

邉
概念を例示している
だけで、この字形を
「正しい」としてい
るわけではない

基底文字もMJ文字図
形と1対1で紐付けて
いる

辞書典拠のある文字概念と、その
字形バリエーションという整理

辞書典拠どころか、どの文字の異体
字かの判断すら難しい字形を含む

準拠フォントならどれでもOKとすべき
(デザイン差すら問題になる用途には

利用すべきでない)
当協議会が提供するフォント/デジタル庁が提供するフォント以外

の互換フォント利用は注意が必要

IVSを利用して
字形バリエーション
を表現

 淘汰されるはずの、低頻度または局所的
なバリエーションが(電子的に)固定化

 造語能力を有する漢字＝歴史の継承
→意図してその形、というのもある

10

意図しない造字：
書き間違い、劣化コピー

意図した造字：
会意文字・形声文字

省略字：
省文、草書体

􎝇

􎜰

􊣹

􉣁

􉙔

􉗅

標準化済みの
文字字形集合

 行政事務標準文字はJIS X 0213とともに行政事務とベース・レジストリで用いる
 行政事務標準文字 追加分の国際標準化はこれから順次進む
 コードが同じでも、指し示す文字字形の抽象度が同じとは限らない
 異体字＝書き間違いのバリエーション、ばかりではない

11

12

13

ISO/IEC JTC 1 SC 2 WG 2

ISO/IEC 10646
Universal Coded Character Set

ISO/IEC 14651
International string ordering and comparison

Unicode Consortium

The Unicode Standard

Unicode Technical Standard #10
Unicode Collation Algorithm (UCA)

Ideographic Variation
Database (IVD)

Common Locale
Data Repository (CLDR)

International Components for Unicode (ICU)

規格として参照 整合

Common Tailorable Template
 (CTT)

Default Unicode Collation
Element Table (DUCET)

整合

整合

Locale specific rules..
(date formats, currency units, units

of measurement (weights and
measures), numeric notation, etc.)

ISO/IEC JTC 1 SC 29 WG 3

ISO/IEC 14496-22
Open Font Format

文字コード 順序 フォント

Last Resort Font

UAX #29: Unicode Text
Segmentation

UAX #14: Unicode Line
Breaking Algorithm

分割

14

文字コード 順序 フォント 分割

文字符号化形式 符号化文字 (UCS)
字
形 UTF-32

 (32bit単
位)

UTF-16
 (16bit単

位)
UTF-8

 (8bit単位) IVS

00004E9C 4E9C E4 BA 9C U+4E9C 亜
0002000B D840 DC0B F0 A0 80

8B U+2000B 𠀋
0000908A 908A E9 82 8A U+908A 邊
0000908A
000E0109

908A DB40
 DD09

E9 82 8A F3
 A0 84 89 U+E0109 U+908A 

は 306F
ば 3070
ぱ 3071

か 304B
が 304C
㼺 304B 309A

整列したときに
どちらが先に来るか？

㼺 304B 309A

か 304B
 000D
 000A
゜ 309A

改行するときに、

分割して良い
位置はどこか？

か 304B

゜ 309A

㼺 304B 309A

＋

↓

合成した字形の
出し方は？

となるのはダメ

文字概念を
データとしてどう表現するか？

 文字コード
◦ 名前と箱
◦ エンコーディング
◦ 部分集合

 順序
 分割
 リファレンス実装
 フォント実装

15

 名前：文字概念に対する名前付け
 箱：コードポイント

◦ 10646：文字概念に符号=文字コード(箱の中の位置)を付与＝基底文字
◦ IVD：字形バリエーション：基底文字にぶら下がる

16

第0面

第16面

16
bit
面
×
17

第2面

第15面

:
:
:

第14面

JIS X 0208の全て
JIS X 0213の一部

JIS X 0213の
一部

IVSのセレクタ

第1面

Adobe-Japan1

Hanyo-Denshi

HKSCS-2016

Moji_Joho

MSARG

 外部連携：UTF-8 (以外を用いるのはよほどの理由がない限り避けるのが妥当)
 内部処理：UTF-16かUTF-8

17

処理系サロゲート
表現

スカラー値1つの
オクテット⾧(参考)BOMエンディアン単位幅

(bit)
符号化

方式
符号化

形式

Web/HTML/HTTP/JSON/XMLの既定
Linux/Unix系ロケール・ファイル名
Rust/Go(文字列はUTF-8保証)
多くのツール・プロトコル

×1～4バイト
原則不要
(付与可だが
非推奨)

なし8UTF-8UTF-8

一部ファイルフォーマットやプロトコルで明示
的にBE指定(例：OpenTypeの一部テーブルな
ど)、ICU内部はUTF-16(環境依存でBE/LE)

○2または4バイト
(1または2コードユニット)付与可ビッグ

エンディアン16UTF-16BEUTF-16

Windows(ワイド文字API、NLS)
.NET(System.StringはUTF-16)
Java/JavaScriptはUTF-16コードユニットベース
の文字列モデル

○2または4バイト
(1または2コードユニット)付与可リトル

エンディアン16UTF-16LEUTF-16

一部の低レベルAPI／ファイルフォーマットで採
用例あり(限定的)×常に4バイト

(1コードユニット)付与可ビッグ
エンディアン32UTF-32BEUTF-32

POSIX/glibcのwchar_tは概ねUTF-32
一部ツール／処理系の内部表現で採用×常に4バイト

(1コードユニット)付与可リトル
エンディアン32UTF-32LEUTF-32

 ISO/IEC 10646(UCS)は巨大(15万文字以上)
◦ 全部を対象にするのはほとんどの場合オーバースペック

 ISO/IEC 10646 Annex A で部分集合(サブセット)を定義している

18

Annex A 元の集合
Subset name #
BASIC JAPANESE 285 JIS X 0213
JAPANESE NON IDEOGRAPHICS EXTENSION 286
JIS2004 IDEOGRAPHICS EXTENSION 371
MOJI-JOHO-KIBAN IDEOGRAPHS-2016 390 文字情報基盤漢字・変体仮名
KANA SUPPLEMENT の一部 (U+1B001～U+1B0FF) 1042
KANA EXTENDED-A 1115
※これから 行政事務標準文字 追加分

 文字/文字列を比較して、どちらが「大きいか」を決定する

 要件
◦ 画面の「文字コード順」は、人の感覚的な辞書順と一致しない
◦ 表記ゆれ(合成/分解、濁点・アクセント違いなど)を同じと見なしたい

場面が多い
◦ 並びや検索の慣習は言語・地域で異なるため、共通基盤＋ロケール調

整が必要

 仕組み
◦ 文字や文字列に4レベルの「重み付け」を与え、その重みで比較・並べ

替え
◦ DUCET: 言語に依存しない既定重み(標準の初期値)
◦ CLDR: 言語・地域ごとの慣習ルール(アクセントの扱い、ケース、句読

点、数値ソート等)
◦ 実装(例: ICU): DUCET＋CLDRを適用して、アプリやDBが使える比較・

ソートキーを提供
19

 文字列を正規化＝比較の前提を揃える
 4レベルの重み付けに従って大小を決定

20

は 306F
ば 306F 3099
ぱ 306F 309A

か 304B
が 304B 3099
㼺 304B 309A

は 306F
ば 3070
ぱ 3071

か 304B
が 304C
㼺 304B 309A

は 306F ; [.193A.0020.000E.306F]
ば 3070 ; [.193A.0020.000E.306F][.0000.013D.0002.3099]
ぱ 3071 ; [.193A.0020.000E.306F][.0000.013E.0002.309A]

か 304B ; [.1926.0020.000E.304B]
が 304C ; [.1926.0020.000E.304B] [.0000.013D.0002.3099]
㼺 304B ; [.1926.0020.000E.304B] 309A ; [.0000.013E.0002.309A]

DUCET

正規化

4レベルの重み付け 分類 レベル
基底文字 L1
アクセント L2
大文字小文字/異体字 L3
句読点 L4
同一 Ln

※IVS:無視するのが既定。明示的に処理しないと並び順は不定となる

 後方互換との兼ね合いで実装パターンは様々。 CLDRベースで独自実装というパターンも

 バージョン間で差異がある場合もあり

21

代表環境 代表的ギャップ ICU互換度指数 基盤 カテゴリ

Android
PostgreSQL(ICU)
SQLite+ICU
JavaScript Intl(ブラウザ/Node)
PHP intl
Apple Foundation
Windows(System ICU 直接利用)
.NET 5+(既定ICU)

一部環境でテーラリング非対応／API露出が限定
(例：JavaScript Intl、.NET 5+) 7‒8 ICU ICUそのもの／

ICU直ラッパー

Go collate
OpenJDK java.text ロケール拡張(-u-co-)／テーラリングが限定的 4‒6 CLDR CLDR準拠の同等実装

Win32/WinRT API
.NET Framework ≤4.x
SQL Server(Windowsコレーション：_SC、
*_UTF8、版付き_140/_150 など)

BCP47の-u-co等による動的指定不可、任意テー
ラリング不可、numeric等のオプション露出が
限定、UCA/ICUと細部差

6-8
NLS(UCA近似＋
Microsoftテーラリ
ング)

Windows NLS ベース(版付
きWindowsコレーション含
む)

SQL Server(SQLコレーション：互換用) UCA非整合、コードページ依存、補助文字の扱
いが不完全、テーラリング不可、UTF-8非対応 2‒4 独自(非UCA/NLS

の旧来仕様)
Microsoft SQL レガシーコ
レーション(SQL_系)

Oracle Database
MySQL 8.0 動的co切替不可、テーラリング不可 3‒5 UCA

(独自/定義済) 独自UCAベース

Python locale
C/C++標準 locale BCP47拡張不可、機能露出が限定 2‒4 POSIX/glibc POSIX/glibc ロケール

 照合はDBMSの基本機能→旧バージョン互換性とICU互換性の両立の仕方は様々
 照合の既定ではIVSは区別しない→区別する機能はOracle 23ai以降とSQL Server 2017以降

22

Identical Quaternary Tertiary Secondary Primary 項目／DBMS
上位で同一の場合にコー
ドポイントで最終タイブ
レーク

句読点・空白など可変要
素(alternate=shifted時)

大文字小文字・幅・カナ
差なども区別

アクセントを区別、大小は
無視

基本文字のみ(アクセン
ト・大文字小文字・幅・
カナ差は無視)

区別する差異

例：
NLS_SORT=BINARY(コー
ドポイント／バイト順)

明示指定不可(実装依存) 言語別リンギスティック＋
大小区別で近似

言語別リンギスティック＋
大小無視で近似

例：
NLS_SORT=BINARY_AI／
BINARY_CI(近似)

Oracle Database

例：_BIN2(コードポイン
ト順。_BINは旧式)

ユーザー指定不可(コレー
ション定義に依存) 例：_AS_CS／_AI_CS 例：*_AS_CI

例：
Latin1_General_100_CI_
AI(CI＋AI)

SQL Server

例：utf8mb4_bin／
utf8mb4_0900_bin(コー
ドポイント順)

明示指定不可(定義に依存)
例：
utf8mb4_0900_as_cs／
utf8mb4_0900_ai_cs

例：
utf8mb4_0900_as_ci(AS
＋CI)

例：
utf8mb4_0900_ai_ci(AI
＋CI)

MySQL／MariaDB

例：und-u-ks-identical
例：und-u-ka-
shifted(alternate=shifted
)

例：und-u-ks-level3(必要
に応じて kc=true) 例：und-u-ks-level2 例：und-u-ks-level1 PostgreSQL(ICU)

内蔵BINARY(コードポイン
ト／バイト順)

ICU拡張：
alternate=shifted指定可 ICU拡張：強度=TERTIARY ICU拡張：強度

=SECONDARY
ICU拡張：強度=PRIMARY
／内蔵NOCASEはASCIIの
み近似

SQLite

UCA強度=IDENTICAL(ま
たはバイナリ順)

UCAの
ALTERNATE=SHIFTED 指
定可

UCA強度=TERTIARY UCA強度=SECONDARY UCA強度=PRIMARY(UCA
系コレーション) IBM DB2

 文字列をどこで分割して良いかの規定

 必要な背景
◦ コードポイントと「見た目の文字」は一致しない(結合文字、合成、絵文字のZWJシーケン

スなど)
◦ カーソル移動・選択・削除、語単位の操作や検索に一貫した境界が必要
◦ 言語ごとに語・文の境界が異なるため、言語非依存な既定ルールが求められる

 設計目標
◦ 文字(拡張書記素集群)・語・文の「既定の境界」を提供し、ロケールでテーラリング可能
◦ 正規等価や複雑な絵文字シーケンスを崩さず、ユーザー知覚に近い分割を保証
◦ 高速な反復(イテレーション)で実用的な編集操作を支える

 設計構造
◦ 文字プロパティ駆動の規則セット(Grapheme_Cluster_Break／Word_Break／

Sentence_Break、Extended_Pictographic、ZWJなど)
◦ 拡張書記素集群(Extended Grapheme Cluster)を最小の「見た目の文字」単位として定義
◦ CR+LFは一体として扱うなどの「非分割」優先ルール→分割許可ルールの順で適用
◦ 語・文分割はデフォルト規則を提供し、辞書ベース分割(タイ語など)は別途テーラリングで

補完

 23

 濁点・半濁点は前置した文字と分離しない、と規定
 前置する文字に関する制約規定はない

24

㼺 304B 309A

か 304B
 000D
 000A
゜ 309A

3099..309A ; CM # Mn [2] COMBINING KATAKANA-HIRAGANA VOICED SOUND MARK..
COMBINING KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK

UNICODE LINE BREAKING ALGORITHM
https://www.unicode.org/reports/tr14/#Properties

https://www.unicode.org/Public/UCD/latest/ucd/LineBreak.txt

 文字を含む地域性は非常に複雑
→「仕様書」だけでは定義しき
れない
→リファレンス実装が存在
→ICU: International
Component for Unicode

 C/Java/Rustで実装
 ソフトウェアスタックの奥底に

位置している
→アプリ側から意識する必要は
ない

25

Chromeのソフトウェアスタック

Webページ／Webアプリ(HTML／CSS／JavaScript／WebAssembly)

ブラウザプロセス(Chromium)

UI／ウィンドウ管理 ネットワーク
(Chromium net)

ストレージ(Cookie
／DB)

セキュリティ／
Sandbox制御

レンダラプロセス(Blink／V8)

Blink(レンダリングエ
ンジン)

V8(JavaScriptエン
ジン)

DOM／レイアウト／
CSS

テキスト(Bidi／
Break)

Skia(2D描画) HarfBuzz(字形シェ
イピング)

共通ランタイム／ライブラリ
ICU(Unicode処理：正規
化／照合／セグメント)

HarfBuzz(テキストシェイ
ピング) Skia(グラフィックス) Sandbox／IPC

GPUプロセス(描画／コンポジット)
ANGLE／Dawn／

Graphics API
コンポジタ／タイ

ル管理

OS層(Windows／macOS／Linux／Android 等)
OSサービス(ファイル／ネット

ワーク／フォント)
グラフィックスAPI(Direct3D／

Metal／Vulkan)
カーネル／ドライバ(GPUドライバ含

む)

 文字コードと字形をまとめたもの
＝フォント
だけではない
◦ 文字列として描画する際の付帯情報を

様々に付与
◦ 「㼺」：IPAmj明朝では「合成後の字

形に置換する」定義を追加

 フォントデータの定義とレンダリ
ングエンジンが協調して動作
◦ レガシーのグラフィックス処理系では

対応していない場合もあり

26

U+304B → aj852
U+309A → aj16327

aj852

aj16327

aj16209

cmap

aj852 + aj16327
→ aj16209

GSUB

Glyf

ipamjm.ttf

Graphics renderer

DirectWrite
Core Text
HalfBuzz

Text renderer

font renderer

Apps with UI

App logics

APIs

゜

 フォントは共有リソース
→使いたい文字の範囲はアプリに
よって異なる
→「・」「▯」がなるべく出ない
ことが望ましい

 複数のフォントを組み合わせてで
きるだけ文字が出るような仕組
＝フォントフォールバック

 つまり、「表示される」と「使っ
て良い」は別

27

こんにちはⅮ

フォールバック2
（例: Emoji） こんにちは × Ⅾ ×

→ 絵文字のみ対応

最優先フォント
（例: 游ゴシック）

こんにちは Ⅾ × ×
→ローマ数字500の”D”と 絵文字が欠落

フォールバック1
（例: MS Gothic）

こんにちは Ⅾ ×

「こんにちは」→ 最優先フォント (游ゴシック)
 「 Ⅾ 」→ フォールバック1 (MSゴシック)
 「 」→ フォールバック2（Emoji）
またはシステムデフォルトフォント

→ ローマ数字はあるが絵文字はなし

 文字の標準化は、箱の中の位置を決めることだけではない
 ワールドワイドに対応したデータベースとアルゴリズムに扱い方を定義すること

も必要
 フォントも仕様を整合させたものが必要になる
 表示される文字＝使っていい文字、ではない
 実装のレベルは処理系/基盤によって異なるので、処理のルートで結果が異なる

ことも起こりうる

28

29

 戸籍：戸籍謄本、抄本
 住民記録：住民票、戸籍附票の写し、転出証明書、印鑑登録証
 税：納税通知書、納付書
 保険：(国保/介護保険/後期高齢者医療)被保険者証
 福祉：児童手当、各種給付・助成決定通知
 教育：就学通知書

30

 行政事務標準文字の文字コードをデジタルに保持するものは現時点ではない

31

補足説明 文字セット 種類

住民票の表記と同じ
(市町村外転居時は再発行となるが、必ずしも外字が廃される
わけではない)

住基統一文字
＋外字
(→行政事務標準文字に移行)

券面 マイナンバーカード

券面表記文字のうち、左記文字セットに含まれない文字は、
総務省作成の”代替文字確認ガイド”に基づき、自治体側で置
換

JIS X 0208
＋JIS X 0212

電子証明書

左記文字セットに含まれない文字は、法務省 “在留カード等
に係る漢字氏名の表記等に関する告示”別表に基づき、出入国
在留管理庁側で置換

JIS X 0208
＋JIS X 0212
＋入管外字(176文字)

券面 在留カード
特別永住者証明書

JIS C 6226 (JIS X 0208:1978)
＋外字

券面 運転免許証

外字イメージがICチップ内に格納されている

JIS C 6226 (JIS X 0208:1978)
＋外字

ICチップ内

※JIS X 0213は、JIS X 0208を包含するが、JIS X 0212は包含しない
※住基統一文字、JIS X 0212は、文字情報基盤に包含されている
※マイナンバーカード 電子証明書の項は、公的個人認証サービス プロファイル仕様書 3.1.1販を参照

 紙での受付＝目視確認と再入力、の局面は減少
 表示は？

32

マイナンバーカード普及の影響 本人確認手段(代表) 主な局面(例) 対面要否×突合有無

eKYCが標準化・即時化。紙・
手書きの削減、非対面完結が広
範に可能に。

マイナンバーカードIC
読取＋JPKI、運転免許
＋顔認証(セルフィー)

 オンライン口座開設(銀行・証券)
 暗号資産・送金アプリ有効化
 携帯回線のオンライン契約(eSIM等)
 税・給付金のオンライン申請(e-Tax/マイナポータル)

対面不要(オンライン
完結可)

窓口でのカード提示により確認
が迅速化。事前オンライン申請
が広がる一方、交付・受領時の
対面と突合は引き続き必要。

顔写真付き公的身分証
(マイナンバーカード／
運転免許／旅券 等)、必
要に応じ戸籍・住民票
等

 パスポート申請・交付
 運転免許の更新・再交付
 在留関連手続
 印鑑登録
 公証役場の嘱託・定款認証
 (店頭限定の)銀行口座開設

対面必須＋突合あり
(窓口で手書き氏名・
住所とデジタル情報を
照合)

カード提示の受容が進み手続が
簡素化。事前Web登録やスキャ
ン導入で手書き負担が軽減。

顔写真付き公的身分証
提示(マイナンバーカー
ド等)

 宿泊チェックイン(名簿記載)
 店頭の年齢確認(酒・たばこ等)
 国内線搭乗時の本人確認
 宅配の年齢確認商品受取
 郵便の本人限定受取

対面必須＋突合限定
(提示中心・記帳はす
るが外部照合義務は弱
い)

 紙の書面は行政事務標準文字に集約していく
 マイナンバーカード 公的個人認証の基本4情報はJIS X 0208+JIS X 0212
 手書き突合→再入力は減少する一方で、表示/印刷は必要

33

34

 ユースケース
◦ デジタル化に伴うワークフローの変化(対面前提→非対面・ネットで完結)の有無
◦ 文字集合のバリエーションのどれが適切かを判断
◦ 入力が本当に必要なのかを判断

 調達
◦ 要件書に記載する事項

35

 ユースケースに応じて選択する必要がある

36

デメリット メリット 文字集合

 カバー範囲が狭い
 入力に強い制約を掛ける必要が生じる

 ミニマムセットだが、もはやない
(レガシーの組込環境ぐらいしかない)

昔ながらのシフトJIS
 (JIS X 0208＋α)

 標準として古い  ほとんどのプラットフォームで利用可能
 マイナンバーカード内の基本4情報を表示

できる

JIS X 0208＋JIS X 0212

 マイナンバーカード内の基本4情報の表示
には不十分

 政府が行政処理の標準と定めている

JIS X 0213

 字形差異が小さい漢字が多数あるので、使
う側のスキルが問われる

 有償フォントがほぼ存在しない

 追加の1万文字以外は行政事務標準文字と
同じ

 全て国際標準化済みなので、処理系でも
正しく扱われることを期待できる

文字情報基盤

 同上
 一部が外字扱い

 戸籍氏名文字を正確に再現できる 行政事務標準文字

 使いこなすのが更に困難
 処理系によって対応の程度が更にばらける

 入管正字以外の外国語の文字を使える 外国語も表現可能な文字集合

 文字仕様
◦ 文字集合：Annex Aのsubset #
◦ エンコーディング：内部/外部を分ける
◦ 前提とするフォント：明示する (フォントを示す＝文字集合を示すわけではない)

 入力
◦ IMEがカバーしない範囲の入力要否、必要な場合の手段
◦ 仕様外の文字入力時の振る舞い

 データ処理
◦ 移行：新旧の文字集合の突合要件＝他の文字に丸めるのかどうか
◦ 照合：処理系(実装言語/DBMS)で照合規則が整合することの確認

 出力
◦ 改行、文字数制限のある局面での境界値(合成文字・IVS)テスト

37

 内部設計
◦ モダンな処理系であれば差異はあっても概ね扱える

◦ IVSの比較が必要ならば、DBMSの選択肢は限られる

◦ テストセットを固める
◦ 文字集合の境界値
◦ IVS・合成文字×改行・文字数制限処理

 外部設計
◦ インタフェースのエンコーディング・文字集合：レガシーシステム向けの縮退変換機能の要否

38

39

 文字字形集合
◦ 商業法人・不動産登記の使用文字のうち、突合できない文字字形が約4,000

(2025年4月25日 デジタル庁ベース・レジストリ推進有識者会合（第2回）資料6に基づく)
(https://www.digital.go.jp/assets/contents/node/basic_page/field_ref_resources/c30d3c8e-17bf-4107-a1ab-b00c2f4c74ef/60b43962/20250425_base-registry-advisory-board_outline_06.pdf)

 国際標準化
◦ 途半ば
◦ レアケースの扱いであり、明快なカテゴライズができるわけではない
◦ 多角的な材料に基づいて、各論を丁寧に進めていく必要がある

40

41

